Developing Algorithm Components for GPM Snowfall Retrievals

Guosheng Liu Florida State University

Contributors: E. Sims, H. Nowell, R. Honeyager, M. Yin - FSU J. Turk - JPL

Research Progress

- Snow-Rain Separation Scheme
 - Inclusion of lapse rate correction
 - Equation version available remove "bumpy points" in lookup tables
- Nonspherical Particle Scattering Tables
 - Inclusion of aggregates
 - Application to triple-F radar ice signatures → convective vs. stratiform
- Radar-Guided High-Freq MW Radiometer Snowfall algorithm
 - DPR+CloudSat → Quality of training data
 - For GMI
 - For MHS → Channel selection
- Study on 1D-VAR Optimized Database for Over-Ocean Snowfall
 - For GMI → Factors that contribute observed-simulated TB difference

Separating Snow and Rain Conditions Using Environmental Information

Goal: Find an optimal way to separate snow from rain pixels so that proper algorithms can be applied.

Snow-Rain Separation

Data Used:

Land: NCEP ADP Operational Global Surface Observations,

1997-2007

Ocean: International Comprehensive Ocean-

Atmosphere Data Set (ICOADS),

1995-2007

Upper Air: Integrated Global Radiosonde Archive (IGRA)

Sensitive Variables

- Air temperature (2 m)
- Humidity (2 m)
- Low-level (0 500 m) lapse rate
- Surface skin temperature
- Land or ocean

Look-Up-Table Version: Sims & Liu 2015, Equation Version: Yin & Liu 2018

does it matter?

When Apply to CloudSat

Mean Zonal occurrence of oceanic light precipitation (<1.0 mm/h) as a percentage of total precipitation occurrence, derived from COADS shipborne data (1958-1991).

Occurrence Frequency and Snowfall rate, averaged over all observations of CloudSat from 2006 to 2010.

Scattering Database for Nonspherical Ice Particles

Goal: 1. improve physical retrievals

2. understand observed radiative signatures

Scattering Database for Nonspherical Snowflakes

Crystal type particles (Liu, 2008)

Aggregate snowflakes: rounded, oblate and prolate (Nowell et al., 2013; Honeyager et al. 2015)

Difference in Ice Microphysics Between Convective and Stratiform Clouds

Radar-guided high-freq microwave radiometer snowfall retrievals

- 1. Important channels for snowfall retrievals
- 2. The importance of using both CloudS CPR AND DPR

2B-CSATGPM – J. Turk

- CloudSat GPM
 within +/- 15 min
 nearest-neighbor
- Many other passive microwave sensors are also collocated
- Time period:2014.03 present

Feb. 2, 2015 North American Blizzard

Jan 23, 2016 Cold Air Outbreak

Aqua MODIS true color image for a snowfall case on 23 Jan 2016 (from NASA/EOSDIS)

Use combined CloudSat/CPR and GPM/DPR as "truth"

Use 2B-CSATGPM dataset of Turk (2015)

CloudSat vs. GMI - Global

Train Retrieval Algorithm Using CloudSat Alone vs. CloudSat+DPR

r=0.98

All vs High-Freq Channels Only

Snowfall Retrievals by MHS (89-183GHz) trained by CloudSat

4 years averages

Over ocean, a more physically-based retrieval – Building 1D-Var optimized database

1D-Var Optimization for snow-TB database

- Over ocean, for GMI data, we are developing an a-priori database for Bayesian type snowfall retrievals, similar approach to rainfall retrievals.
- It starts with "co-incident" CloudSat CPR snow water profiles, use 1D-Var to optimize the profiles to match coincident GMI TBs.
- Build a snow profile TB database using all available CloudSat –
 GPM obs

March 11, 2015 Case

Initial CloudSat-derived snow water profiles

After 1D-Var optimization to match GMI

Retrievals from GMI alone using the optimized database

Conclusions

- ☐ Improving snow-rain separation scheme
 - Inclusion of lapse rate; equation version
- ☐ Enhancing nonspherical ice scattering tables
 - aggregates; bigger particles; interpretation triple-freq obs
- □ Developed a method to use CloudSat +GPM/DPR to guide passive microwave observations for snowfall retrievals
 - High-frequency channels (>85 GHz) is necessary (AMSR-E/2 does not seem to good), seems to be **sufficient**, for passive microwave snowfall retrievals
 - CloudSat + DPR training captures both light AND heavy snowfall
 - Able to retrieve snowfall using GMI, MHS, (SSMIS): Case studies, averages over US, average globally
- □1D-Var optimization to build snow-TB database for over-ocean snowfall retrievals
 - Find important factors that contribute to the difference between simulated and observed TBs

Backup Slides

Radar-Guided Passive Microwave Snowfall Algorithm (probability & snowfall rate)

(Liu&Seo, 2013)

- EOF analysis to passive microwave data for dimension reduction
- Lookup Table using collocated Radar-Radiometer data:
 - Project observed TBs to the first 3
 PCs
 - In the 3-d EOF space, using passive microwave-CloudSat matchups, compute the probability of snowfall; Use a Z-S relation compute snowfall rate
- Lookup Table are separated by different surface/synoptic categories: currently 7

Apply to C3VP Case – 2007.1.22 CloudSat-trained MHS snowfall retrieval

CloudSat-Guided Snowfall Retrievals - Global

